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Noncommutative Bayesian Statistical Inference
From a Wedge of a Bifurcate Killing Horizon

Gavriel Segre1

Received

Expanding the remark 5.2.7 of Segre (Segre, G. (2002). Algorithmic Information The-
oretic Issues in Quantum Mechanics, PhD Thesis, Dipartimento di Fisica Nucleare e
Teorica, Pavia, Italy. quant-ph/0110018.) the noncommutative bayesian statistical infer-
ence from one wedge of a bifurcate Killing horizon is analyzed looking at its interrelation
with the Unruh effect.
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NOTATION

x = y x is equal to y
x := y x is defined as y
card(S) cardinality of S
f∗ differential map of f
f ∗ pull-back of f
LX Lie derivative w.r.t. X
Is[(M, gab)] isometry group of the space-time (M, gab)
�(T (r,s) M) sections of the (r, s)-tensor bundle over M
I −(S) chronological past of the space-time’s region S
I +(S) chronological feature of the space-time’s region S
J−(S) causal past of the space-time’s region S
J+(S) causal future of the space-time’s region S
D−(S) past domain of dependence of the space-time’s region S
D+(S) future domain of dependence of the space-time’s region S
D(S) domain of dependence of the space-time’s region S
S(A) space of the states over a W ∗-algebra
τunbiased unbiased state
AW

(M,gab) Weyl algebra of the space-time (M, gab)
SH (AW

(M,gab)) Hadamard states over AW
(M,gab)
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σω
t modular group of the state ω

AUT(A) automorphisms of the W ∗-algebra A
INN(A) inner automorphisms of the W ∗-algebra A
OUT(A) outer automorphisms of the W ∗-algebra A
GR – AUT(G, A) automorphisms’ group of A representing G
GR – INN(G, A) inner automorphisms’ groups of A representing G
GR – OUT(G, A) outer automorphisms’ group of A representing G
©S semidirect product of groups

1. NONCOMMUTATIVE BAYESIAN STATISTICAL INFERENCE

Noncommutative Bayesian Statistical Inference as introduced by Miklos
Redei in the 8th chapter “Quantum conditional and quantum conditional prob-
ability” of Redei (1998), is based on the following analysis.

Given a classical probability space (X, σ, µ) let us suppose to be a statistician
having access only to the partial information concerning the probability of an event
B ∈ σ and whose goal is to estimate the unknown probability µ(A) of an arbitrary
event A ∈ σ .

The Bayesian recipe prescribes that, before using even the partial information
he has, the more natural estimation of µ(A) is the one introducing no bias, i.e.

µA PRIORI(A) := Punbiased(A) (1.1)

i.e. the normalized distribution over (X, σ ) whether card(X ) < ℵ0 or the Lebesgue
measure over (X, σ ) whether card(X ) = ℵ1.

Let us observe that in the case card(X ) = ℵ0 the unbiased probability measure
over (X, σ ) doesn’t exist so that the Bayesian strategy of statistical inference is
not defined in that case.

The acquisition of the partial information he can access results, according to
the Bayesian recipe, in the following ansatz:

µA PRIORI(A) := Punbiased(A) → µA POSTERIORI(A) := µA PRIORI(A ∩ B)

µ(B)
(1.2)

Let us now recall the Basic Theorem of Noncommutative Probability stating that
the category having as objects the classical probability spaces and as morphisms
their automorphisms is equivalent to the category having as objects the algebraic
commutative probability spaces and as morphisms their automorphisms.

Such a theorem naturally leads to a noncommutative generalization of the
Bayesian recipe consisting in

1. the recasting of Eq. (1.2) in the language of algebraic probability spaces;
2. the generalization to noncommutative probability spaces.
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Given the algebraic commutative probability space (A, ω) with

A := L∞(X, σ, µ) (1.3)

ω(a) :=
∫

X
dµ a a ∈ A (1.4)

let us suppose that the statistician has access only to the information concerning a
sub-σ -algebra σaccessible of σ .

Introduced the W ∗ – algebra:

Aaccessible := L∞(X, σaccessible, µaccessible) (1.5)

where

µaccessible := µ|σaccessible (1.6)

and the associated state ωaccessible ∈ S(Aaccessible):

ωaccessible(a) :=
∫

X
dµaccessible a a ∈ Aaccessible (1.7)

we can express the Bayesian recipe in the following way:

1. Before using even the partial information that is accessible to him, the
better a priori estimation of ω the statistician can perform consists in
introducing no bias, assuming that

ωA PRIORI := τunbiased

where τunbiased is the unbiased state over A:

τunbiased(a) :=
∫

X
d Punbiased a a ∈ A (1.8)

2. The adoption of the available information may be encoded in the passage
from the a priori estimation to the a posteriori estimation of ω specified
by the Bayes rule:

ωA PRIORI(·) = τunbiased(·) → ωA POSTERIORI(·) := ωaccessible(EA PRIORI · )

(1.9)

where EA PRIORI : A → Aaccessible is the conditional expectation w.r.t.
AaccessibleωA PRIORI-invariant.

The Basic Theorem of Noncommutative Probability allows to generalize im-
mediately such a recipe to the noncommutative case in which a statistician has
access only to the noncommutative probability subspace (Aaccessible, ωaccessible) of
a larger noncommutative probability space (A, ω):

ωaccessible := ω|Aaccessible (1.10)
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resulting in the following noncommutative bayesian recipe:

1. Before using even the partial information that is accessible to him, the
better a priori estimation of ω consists in introducing no bias, assuming
that

ωA PRIORI := τunbiased

where τunbiased is the noncommutative unbiased probability distribution
over A, namely the tracial state on it.

2. The adoption of the available information may be encoded in the passage
from the a priori estimation to the a posteriori estimation of ω specified
by the noncommutative Bayes rule:

ωA PRIORI(·) = τunbiased(·) → ωA POSTERIORI(·) := ωaccessible(EA PRIORI.)

(1.11)

where EA PRIORI : A → Aaccessible is the conditional expectation w.r.t.
Aaccessible ωA PRIORI-invariant.

Let us now observe that to the feasibility condition for such a statistical inference
already present in the commutative case and requiring the existence of the unbiased
probability distribution, another constraint has to be added in the noncommutative
case: according to Takesaki Theorem EA PRIORI exists if and only if the following
modular constraint is satisfied:

σωA PRIORI
t (a) ∈ Aaccessible ∀a ∈ Aaccessible, ∀t ∈ R (1.12)

where σ
ωA PRIORI
t denotes the modular group of ωA PRIORI.

Let us observe, with this regard, that since the modular constraint is not satis-
fied for any sub-W ∗-algebra, the philosophical subjectivistic viewpoint consistent
in the commutative case, cannot be generalized to the noncommutative case.

2. NONCOMMUTATIVE STATISTICAL INFERENCE FROM
A WEDGE OF A BIFURCATE KILLING HORIZON

Given a space-time, i.e., a four-dimensional lorentzian manifold (M, gab)2

(Kobayashi and Nomizu, 1996; Wald, 1984, 1994), let us suppose that it admits a
bifurcate Killing horizon, i.e. a bidimensional space-like surface S such that there
exist a Killing vector field Xa vanishing on it:

LXa gab = 0 (2.1)

Xa(p) = 0 ∀p ∈ S (2.2)

2 I will follow Penrose abstract index notation as explained, e.g., in Wald (1984).
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Let us suppose, furthermore, that S is a Cauchy surface of (M, gab),3 i.e. that
its domain of dependence is the whole M :

D(S) = M (2.3)

Denoted by h A and hB the two null surfaces generated by the null geodesics
orthogonal to S, M may be expressed as the union of four disjoint wedges:

M = ∪4
i=1Wi (2.4)

W1 := I −(h A) ∩ I +(hB) (2.5)

W2 := I +(h A) ∩ I −(hB) (2.6)

W3 := J+(S) (2.7)

W4 := J−(S) (2.8)

Let us now suppose to be a statistician living in a Universe whose Physics suffi-
ciently far from Planck’s scale is described by a quantum field theory on (M, gab),
specified by the set of local observables’ algebras {AO}O⊆M obeying Dimock’s
axioms (i.e., Dimock’s generalization to curved space-time of Haag–Kastler’s ax-
ioms) (Dimock, 1980; Haag, 1996; Verch, 2002) whose world-line is a flow line
of the above Killing vector field Xa .

Supposing he can access only the state of affairs concerning the physical ob-
servables localized in W1 his objective is to make a statistical inference concerning
the state of affairs outside W1.

Denoting by

Aaccessible := AW1 (2.9)

the algebra of observables that is accessible to him, his objective is to estimate the
true state ω ∈ S(AW

(M,gab)) of the noncommutative probability space (AW
(M,gab), ω)

describing the Universe in the assumed classical-background approximation,
AW

(M,gab) denoting the Weyl algebra of (M, gab), from the knowledge of the infor-
mation accessible to him, codified by the accessible state defined as the restriction
of ω to the accessible algebra:

ωaccessible := ω|Aaccesible ∈ S(Aaccesible) (2.10)

Noncommutative Bayesian Statistical Theory, as described in the previous section,
would prescribe to him to adopt the following recipe:

3 We have implicitly assumed that (M, gab) is globally hyperbolic and, hence, admits Cauchy surfaces.
While in Classical General Relativity the status of the Strong Cosmic Censorship Conjecture stating
that any “physical” space-time is globally hyperbolic is dubious, it is strongly dubious whether a
Quantum Field Theory on a nonglobally hyperbolic space-time may be consistently formalized.
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1. Before using even the partial information that is accessible to him, the
better a priori estimation of ω consists in introducing no bias, assuming
that

ωA PRIORI := τunbiased

where τunbiased is the noncommutative unbiased probability distribution
over AW

(M,gab), namely the tracial state on it.
2. The adoption of the available information may be encoded in the passage

from the a-priori estimation to the a posteriori estimation of ω specified
by the noncommutative Bayes rule:

ωA PRIORI(·) = τunbiased(·) → ωA POSTERIORI(·) := ωaccessible(EA PRIORI·)
(2.11)

where EA PRIORI : AW
(M,gab) �→ Aaccessible is the conditional expectation

w.r.t. Aaccessible ωA PRIORI-invariant.

Let us observe, first of all, that, according to Takesaki Theorem, the existence of
the involved conditional expectation and, hence, the feasibility of the Bayesian
statistical inference, requires the assumption of the following modular constraint:

σωA PRIORI
t (a) ∈ Aaccessible ∀a ∈ Aaccessible, ∀t ∈ R (2.12)

Let us observe, furthermore, that since the Weyl’s algebra AW
(M,gab) of (M, gab)

is generally not finite, the unbiased noncommutative probability measure τunbiased

doesn’t exist.
It must be observed, at this point, that there exists, anyway, an a priori in-

formation that the statistician can adopt: the fact that the expectation value 〈Tab〉
of the stress–energy operator Tab must be well-defined in order of making the
back-reaction’s semiclassical Einstein equation:

Gab = 8π〈Tab〉 (2.13)

well-defined too, resulting in the condition that ω is an Hadamard state over the
Weyl’s algebra AW

(M,gab) of (M, gab):

ω ∈ SH
(

AW
(M,gab)

)
(2.14)

Consequentially it is natural for the statistician to assume that ωA PRIORI is an
Hadamard state too.

ωA PRIORI ∈ SH
(

AW
(M,gab)

)
(2.15)

Furthermore he a priori knows that some information about the observables
not accessible to him may be recovered by the information concerning Aaccessible
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through the condition:

∃{αg} ∈ GR − INN
[
Is(M, gab), AW

(M,gab)

]
: αg(AO ) = AgO ∀O ⊂ W1 (2.16)

Consequentially it is natural, for the statistician, to choose the a priori state as
much Is[(M, gab)]-invariant as possible.

To understand how this two constraints concretely work as to the determina-
tion of ωA PRIORI it is useful to start analyzing the simpler cases.

3. THE MINKOWSKI CASE

Let us start analyzing the simplest particular case in which (M, gab) is the
Minkowski space-time:

M := R
4 (3.1)

gab := ηab := ηµνdxµ ⊗ dxν (3.2)

ηµν := diag(−1, 1, 1, 1) (3.3)

The isometries-group of Minkowski space-time is the Poincaré group SO(1, 3)
©S R

4 generated by the 10 Killing vector fields:

T µ

(i) := δ
µ

i i = O , . . . , 3 (3.4)

Lµν := xµ∂ν − xν∂µ ν > µ = 0, . . . , 3 (3.5)

Let us then observe that the surface

S := {xµ ∈ R
4 : x0 = x1 = 0} (3.6)

is a bifurcate Killing horizon for the Killing vector field:

Xa := L01 (3.7)

generating boosts in the direction x1. Let us denote by αt the inner automorphisms’
group representing the one-dimensional subgroup it of Is[(R4, ηab)] generated
by Xa .

Since the domain of dependence D(S) of the surface S is such that

D(S) = R
4 (3.8)

S is a Cauchy surface, so that, according to the general analysis previously in-
troduced, one has the splitting of the Minkowski space-time in the four wedges
specified by Eq. (2.4) with

h A = {xµ ∈ R
4 : x0 = x1} (3.9)

hB = {xµ ∈ R
4 : x0 = −x1} (3.10)

W1 = {xµ ∈ R
4 : |x1| < x0, x0 > 0} (3.11)
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W2 = {xµ ∈ R
4 : |x1| < x0, x0 < 0} (3.12)

W3 = {xµ ∈ R
4 : |x1| ≥ x0, x1 > 0} (3.13)

W4 = {xµ ∈ R
4 : |x1| ≥ x0, x1 < 0} (3.14)

Since Xa is time-like in the two wedges W1 and W2 its flow it represents possi-
ble world-lines of a massive observer such as our statistician; we will suppose,
precisely, that the statistician’s world-line is an integral curve of Xa contained in
W1.

Following the condition enunciated in the last section, among the possible
Hadamard states that our statistician may choose as a-priori state, the more natural
one is the restriction to AW1 of the only Is(R4, ηab)-invariant one, i.e., the vacuum
state ω(0):

ωA PRIORI := ω(0)|AW1
∈ S(AW1 ) (3.15)

The Unruh effect, consisting in the fact that, in the case ω = ω(0) in which the
state to estimate is the vacuum one, such a vacuum state appears to the statistician
following the flow it of L01 as a thermal bath, has been explained by Geoffrey
Sewell in terms of Modular Theory through the Bisognano–Wichmann theorem
(Narnhofer et al., 1998), Haag (1996) stating that ωA PRIORI is an αt -KMS-state at
β = 2π .

Let us now recall that the feasibility of the statistical inferential problem is
itself ruled by the modular group of ωA PRIORI through the modular constraint of
Eq. (2.12) whose satisfaction, in the present case:

σω0
t (a) ∈ AW1 ∀a ∈ AW1 (3.16)

should follow by the it -invariance of ω0, by the fact that (W1, ηab|�(T (0,2)W1)) is a
globally hyperbolic space-time for its own and by the fact that

αt AO = Ait O ∀O ⊂ W1 (3.17)

Modular Theory tells us, furthermore, that ωA PRIORI is a σ
ωA PRIORI−t -KMS state

at β = 1.
This double role of the modular group σ

ωA PRIORI
t could suggest an interpretation

of the Unruh effect (stating that, in the case ω = ω(0) in which the state to estimate
is the vacuum one, our accelerated statistician feels a positive temperature) in
terms of the Noncommutative Bayesian Statistical Inference he performs about
the whole noncommutative probability space (AW

(R4,ηab)
, ω) having access only to

the local information of AW1 .
Such a strategy of statistical inference is codified through the following

modified Bayes recipe:

1. Before making use even of the partial information that is accessible to
him, the better a priori estimation of ω consists in assuming as a priori
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state the restriction of the vacuum state to the accessible algebra:

ωA PRIORI := ω(0)|AW1

2. The adoption of the available information may be encoded in the passage
from the a priori estimation to the a posteriori estimation of ω specified
by the noncommutative Bayes rule:

ωA PRIORI(·) = ω(0)|AW1
(·) → ωA POSTERIORI(·) := ωaccessible(EA PRIORI·)

(3.18)

where EA PRIORI : AW
(R4,ηab)

�→ AW1 is the conditional expectation w.r.t.

AW1ωA PRIORI-invariant.

4. THE DE SITTER CASE

Let us then pass to analyze the case in which (M, gab) is the De Sitter space-
time of unit radius (Narnhofer et al., 1998):

M := {xµ ∈ R
5 : ηµνxµxν = 1} (4.1)

gab := i∗ηAB (4.2)

ηAB := ηµνdxµ ⊗ dxν (4.3)

ηµν := diag(−1, 1, 1, 1, 1) (4.4)

namely the hyperboloid of unit radius embedded in the (1, 4)-Minkowskian space-
time (R5, ηAB) endowed with the lorentzian metric induced by the inclusion (iden-
tity) embedding i : M �→ R

5 : i(p) := p ∀p ∈ M .
The isometries-group of (R5, ηAB)

Is[(R5, ηAB)]| = SO(1, 4)©S R
5 (4.5)

is generated by the 15 Killing vector fields:

T µ

(i) := δ
µ

i i = 0, . . . , 4 (4.6)

Lµν := xµ∂ν − xν∂µ ν > µ = 0, . . . , 4 (4.7)

While

i∗Lµν ∈ �(T M) ν = µ = 0, . . . , 4 (4.8)

one has that

i∗T µ

(i) �∈ �(T M) i = 0, . . . , 4 (4.9)

It follows that the isometry group of the De Sitter space-time (M, gab):

Is[(M, gab)] = SO(1, 4) (4.10)
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is generated by the 10 Killing vector fields:

i∗Lµν ∈ �(T M) ν > µ = 0, . . . , 4 (4.11)

Let us then observe that

S := {xµ ∈ R
5 : x0 = x1 = 0} (4.12)

is a bifurcate Killing horizon for the Killing vector field L01 of (R5, ηAB) generating
boosts in the direction x1.

Since the domain of dependence D(S) of the surface S is such that,

D(S) = R
5 (4.13)

that is S is a Cauchy surface of (R5, ηAB), according to the general analysis previ-
ously introduced one has the splitting of the (1, 4)-Minkowski space-time in four
wedges specified by Eq. (2.4) with

h A = {xµ ∈ R
5 : x0 = x1} (4.14)

hB = {xµ ∈ R
5 : x0 = −x1} (4.15)

W1 = {xµ ∈ R
5 : |x1| < x0, x0 > 0} (4.16)

W2 = {xµ ∈ R
5 : |x1| < x0, x0 < 0} (4.17)

W3 = {xµ ∈ R
5 : |x1| ≥ x0, x1 > 0} (4.18)

W4 = {xµ ∈ R
5 : |x1| ≥ x0, x1 < 0} (4.19)

It follows that S|M is a bifurcate Killing horizon for the Killing vector field:

Xa := i∗L01 (4.20)

of (M, gab). Since S|M is a Cauchy surface of (M, gab):

D(S|M ) = M (4.21)

one has the splitting of (M, gab) into the four wedges specified by Eq. (2.4) with

Hi := Wi |M i = 1, . . . , 4 (4.22)

Since the Is(M, gab)-invariance selects again a single state, the vacuum state ω0,
among the Hadamard ones, the prescribed conditions for the selection of the a
priori state lead us to the modified Bayes recipe:

1. Before making use even of the partial information that is accessible to him,
the better a priori estimation of ω consists in assuming as a priori-state
the restriction of the vacuum state to the accessible algebra:

ωA PRIORI := ω(0)|AH1
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2. The adoption of the available information may be encoded in the passage
from the a priori estimation to the a posteriori estimation of ω specified
by the noncommutative Bayes rule:

ωA PRIORI(·) = ω(0)|AH1
(·) → ωA POSTERIORI(·) := ωaccessible(EA PRIORI·)

(4.23)

where EA PRIORI : AW
(M,gab) �→ AH1 is the conditional expectation w.r.t. AH1

ωA PRIORI-invariant.

Let us denote by αt the inner automorphisms’ group representing the one-
dimensional subgroup it of Is[(M, gab)] generated by Xa .

The Unruh effect, consisting in the fact that, in the case ω = ω(0) in which the
state to estimate is the vacuum one, such a vacuum state appears to the statistician
following the flow of Xa as a thermal bath, has been recasted by Figari, Höegh-
Krohn, and Nappi and later by Bros and Moschella in terms of Modular Theory
through the Bisognano–Wichmann theorem (Narnhofer et al., 1998), Haag (1996)
stating that ωA PRIORI is an αt -KMS-state at β = 2π .

Let us now recall that, exactly as in the Minkowskian case, the feasibility of
the statistical inferential problem is itself ruled by the modular group of ωA PRIORI

through the modular constraint of Eq. (2.12) whose satisfaction, in the present
case

σω0
t (a) ∈ AH1 ∀a ∈ AH1 (4.24)

should follows by the it -invariance of ω0, by the fact that (H1, gab|�(T (0,2) H1)) is a
globally hyperbolic space-time for its own, and by the fact that

αt AO = Ait O ∀O ⊂ H1 (4.25)

Modular Theory, furthermore, tells us that ωA PRIORI is a σ
ωA PRIORI−t -KMS state at

β = 1.
So, once again, this double role of the modular group σ

ωA PRIORI
t could suggest

an interpretation of the Unruh effect in terms of the Noncommutative Bayesian
Statistical Inference a statistician performs about the whole noncommutative prob-
ability space (AW

(M,gab), ω) having access only to the local information of AH1 .
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